
Draft version September 6, 2018

Typeset using LATEX twocolumn style in AASTeX62

pyspeckit: A spectroscopic analysis and plotting package

Adam Ginsburg, Vlas Sokolov, Miguel de Val-Borro, Allison Youngblood, Erik Rosolowsky, Jaime E. Pineda,
and Brigitta M. Sipőcz

ABSTRACT

pyspeckit is a tool and library for spectroscopic analysis in Python. We describe the pyspeckit

package and highlight some of its unique capabilities, such as interactively fitting a model to data, akin

to the widely-used splot function of IRAF. pyspeckit employs the Levenberg-Marquardt optimiza-

tion method via the mpfit and lmfit implementations, and important assumptions regarding error

estimation are described here. Wrappers for pymc and emcee are available, as well as a method to

fit lines in spectral cubes. As part of the astropy affiliated packages, pyspeckit is open source and

welcomes input and collaboration from the community.

1. INTRODUCTION AND BACKGROUND

Spectroscopy is an important tool for astronomy.

Spectra are represented as the number of photons, or

total energy in photons, arriving over a specified wave-

length (or equivalently, frequency or energy) range.

Emission and absorption lines due to ions, atoms, and

molecules bear important information via their inten-

sity, width, and velocity centroid. These parameters are

typically measured from model fits to the data, such as

Gaussian, Lorentzian, and Voigt profiles. Historically,

IRAF has provided the astronomy community with easy-
to-use tools for line fitting, but IRAF development has

mostly ceased in the last several years and is currently

only supported in Python 2.7 by AstroConda1. The

lack of an equivalent available tool in Python prompted

the creation of pyspeckit.

pyspeckit development began in 2009 with a script

called ‘showspec’ in the agpy package hosted on Google
Code. It was created and used by a graduate stu-

dent to plot and sometimes fit profiles to spectra in

python. At the time, IDL was still more popular than

python at most institutes (Momcheva & Tollerud 2015,

the first evidence that python had overtaken IDL in

popularity among astronomers was presented in), and

there were no publicly available and advertised tools

for spectral plotting, fitting, and general manipulation

(astropysics, Tollerud 2012, was developed contem-

poraneously and solved many of the same problems as

pyspeckit). The astropy package (??) had its first

commit in 2011, so even the basic infrastructure for such

analysis was not yet established.

1 http://astroconda.readthedocs.io/en/latest/index.html, The
PyRAF command language (https://github.com/spacetelescope/
pyraf) supports both Python 2 and Python 3 and is still main-
tained

pyspeckit’s graphical user interface (GUI) features

were inspired by IRAF’s splot tool, while the fitting

features were inspired in part by xspec (https://heasarc.

gsfc.nasa.gov/xanadu/xspec/). Over subsequent years,

pyspeckit grew by incorporating more sophisticated

models and improving its internal structure. The pack-

age was moved out of agpy and into its own repository
in 2011, first spending a few years on Bitbucket in a mer-

curial repository, then finally moved to GitHub, where

it currenly resides, in 2012.

Because pyspeckit’s initial development preceded

astropy, some features were included that later became

redundant with astropy. Most notably, pyspeckit

included a limited system for spectroscopic unit con-
version. In 2015, this system was completely replaced
with astropy’s unit system. Around the same time, the

Doppler conversion tools (converting from frequency or
wavelength to velocity) that existed in pyspeckit were

pushed upstream into astropy, highlighting the mu-
tually beneficial role of astropy’s affiliated packaged

system (?). pyspeckit became an astropy affiliated
package in 2017.

In this paper we briefly outline pyspeckit architec-

ture and highlight its key capabilities. In Section 2, we

outline the structure of the package. In Section 3, we

describe the GUI system. In Sections 4 and 5, we out-

line pyspeckit’s cube handling capabilities and model

library.

2. PACKAGE STRUCTURE

The central object in pyspeckit is a Spectrum, which

has associated data (e.g., flux), error, and xarr (e.g.,

wavelength, frequency, energy), the latter of which rep-
resents the spectroscopic axis. A Spectrum object

has several attributes that are themselves sophisticated

http://orcid.org/0000-0001-6431-9633
http://orcid.org/0000-0002-3972-1978
http://orcid.org/0000-0002-3713-6337
https://github.com/spacetelescope/pyraf
https://github.com/spacetelescope/pyraf
https://heasarc.gsfc.nasa.gov/xanadu/xspec/
https://heasarc.gsfc.nasa.gov/xanadu/xspec/

2

classes that can be called as functions: the plotter, the
fitter specfit, and the continuum fitter baseline2.

There are several subclasses of Spectrum: Spectra is

a collection of spectra intended to be stitched together

(i.e., with non-overlapping spectral axes), ObsBlock is
a collection of spectra with identical spectral axes in-

tended to be operated on as a group, e.g., to take an av-
erage spectrum, and Cube is a 3D spatial-spatial-spectral

cube.

2.1. Supported data formats

pyspeckit supports a variety of open and proprietary

data formats that have been traditionally used to store
spectral data products in astronomy. It is always pos-

sible to create a Spectrum object from numpy arrays
representing the wavelength, flux, and error of the spec-

trum, but the supported file formats listed below make

the reading process easier.

• ASCII: Text files with wavelength, flux, and

optional error columns can be read using the

astropy.io.ascii module.

• FITS: The Flexible Image Transport System

(FITS; Wells et al. 1981; Greisen et al. 2006; Pence

et al. 2010) format is supported in pyspeckit with

astropy.io.fits. FITS spectra are expected to
have their spectral axis defined using the WCS

keywords in the FITS header. FITS binary tables
with the same wavelength, flux, and optional error
column layout as text files can also be read.

• SDFITS: Data files following the Single Dish FITS
(SDFITS; Garwood 2000) convention for radio as-

tronomy data as produced by the Green Bank

Telescope are partially supported in pyspeckit.

• HDF5: If the h5py package is installed, pyspeckit

will support read access to files containing spectra

in the HDF5 format, where the data columns can

be specified using keyword arguments.

• CLASS: pyspeckit is capable of reading files

from some versions of the GILDAS Continuum

and Line Analysis Single-dish Software format

(CLASS; Gildas Team 2013). The CLASS reader

is known to be compatible with data files from the

2 It is common in radio astronomy to have wide instrumental
residual features in the data that need to be fitted and removed;
this process is called ‘baseline subtraction’. In other wavelength
regimes, this would typically be referred to as continuum fitting or
continuum subtraction. In practical algorithmic terms, fitting a
true astrophysical continuum and a residual instrumental baseline
are indistinguishable.

Arizona Radio Observatory telescopes (12-m and

10-m Submillimeter Telescope) and the Atacama

Pathfinder Experiment (APEX) radio telescope.

2.2. Plotter

The plotter is a basic plot tool that comprises

pyspeckit’s main graphical user interface. It is de-

scribed in more detail in the GUI section (§3).

2.3. Fitter

The fitting tool in pyspeckit is the Spectrum.specfit

object. This object is a class that is created for every
Spectrum object. The fitter can be used with any of

the models included in the model registry, or a custom
model can be created and registered.

To fit a profile to a spectrum, several optimizers
are available. Two implementations of the Levenberg-
Marquardt optimization method (Levenberg 1944; Mar-

quardt 1963) are provided, mpfit3 and lmfit4. Wrap-

pers of pymc5 and emcee6 are also available, though

these tools are better for parameter error analysis than

for optimization.

Once a fit is performed, the results of the fit are acces-
sible through the parinfo object, which is a dictionary-

like structure containing the parameter values, errors,

and other metadata (e.g., information about whether

the parameter is fixed, tied to another parameter, or

limited). Other information about the fit, such as the

χ2 value, are available as attributes of the specfit ob-

ject.

Optimal χ2 —Specfit computes the ‘optimal’ χ2, which

is the χ2 value computed only over the range where the

model contains statistically significant signal. This mea-

surement is intended to provide a more accurate esti-

mate of the χ2 value by excluding pixels that are not
described by the model. By default, the function selects

all pixels where the model value is greater (in absolute
value) than the corresponding error. In principle, this
optimal χ2 may be helpful for obtaining correctly scaled

errors (see Section 2.6.2), though this claim has never

been rigorously tested.

2.4. Data Selection

3 Originally implemented by Craig Markwardt https://www.
physics.wisc.edu/∼craigm/idl/fitqa.html and ported to python by
Mark Rivers and then Sergei Koposov. The version in pyspeckit
has been updated somewhat from Koposov’s version.

4 https://lmfit.github.io/lmfit-py/, http://dx.doi.org/10.5281/
zenodo.11813

5 https://pymc-devs.github.io/pymc/
6 http://dfm.io/emcee/current/, Foreman-Mackey et al. (2013)

https://www.physics.wisc.edu/~craigm/idl/fitqa.html
https://www.physics.wisc.edu/~craigm/idl/fitqa.html
https://lmfit.github.io/lmfit-py/
http://dx.doi.org/10.5281/zenodo.11813
http://dx.doi.org/10.5281/zenodo.11813
https://pymc-devs.github.io/pymc/
http://dfm.io/emcee/current/

3

An important feature of the spectral fitter is the abil-
ity to select the region of the spectrum to be fit. This

selection process can either be done manually, using the

selectregion method to set one or more ranges of data

to include in the fit, or interactively using the GUI. The

selected regions are then highlighted in the plot window

if one is open.

2.5. Continuum Fitting

The fitting process in pyspeckit is capable of treating

line and continuum independently or jointly. If a model
includes continuum, e.g., for the case of a four-parameter
Gaussian profile that includes an additive constant, it
can be fitted through the standard specfit fitter.

However, it is common practice to fit the continuum

independently prior to fitting lines. Such practice is
necessary when fitting absorption lines and practically

necessary for heterodyne radio observations where the
continuum is usually poorly measured and corrupted by
instrumental effects. Following radio convention, the
pyspeckit continuum fitting tool is called baseline.

This module supports polynomial, spline, and power-
law fitting.

2.6. Error Treatment

The Spectrum objects used by pyspeckit have an at-

tached error array, which is meant to hold the 1σ inde-

pendent Gaussian errors on each pixel. While this error
representation may be a dramatic oversimplification of

the true errors for almost all instruments (since it ignores
correlations between pixels), it is also the most com-
monly used assumption in astronomical applications.

The error array is used to determine the best-fit pa-

rameters and their uncertainties (see §2.3). They can

be displayed as error bars on individual pixels or as
shaded regions around those pixels using different dis-

play modes.
A typical example is given below, where we generate

a spectrum and error array using numpy and astropy

tools.

from astropy import units as u

import numpy as np

import pyspeckit

xaxis = np.linspace(-25, 25)*u.km/u.s

sigma_width = 3.0*u.km/u.s

data = 5*np.exp(-xaxis**2 /

(2*sigma_width**2))*u.Jy

error = np.ones_like(data) * 0.2

sp = pyspeckit.Spectrum(xarr=xaxis,

data=data,

error=error)

sp.plotter(errstyle=’fill’)

sp.plotter.savefig("example_fig_1.pdf")

20 10 0 10 20
Velocity (km / s)

1

2

3

4

5

S
ν
 (

Jy
)

Figure 1. An example plotted spectrum showing the auto-
mated unit labeling and errors. The errors are shown with
the ‘fill’ style and represent symmetric 1 − σ Gaussian
errors.

2.6.1. Automatic Error Estimation

In the case where there are portions of the spectrum

that have no signal peaks, a common approach in spec-
troscopy is to estimate the errors from the standard de-

viation of those signal-free pixels. This approach as-
sumes the noise is constant across the spectrum. If all
of the peaks present in the spectrum are fitted well by

the model, the standard deviation of the residual spec-

trum from the model fit will accurately represent the

uniform errors. If a fit is performed with uninitialized

errors, pyspeckit will automatically replace the errors

with the standard deviation of the residuals; this means
that performing a fit on the same data (without asso-
ciated errors) twice will result in the same parameter

values both times, but different errors the second time.

4

2.6.2. Parameter error estimation

Parameter errors are adopted from the mpfit or lmfit
fit results. The Levenberg-Marquardt algorithm finds a

local minimum in parameter space, and one of its returns

is the parameter covariance matrix. This covariance ma-

trix is not directly the covariance of the parameters, and

must be rescaled to deliver an approximate error.

The standard rescaling is to multiply the covariance

by the sum of the squared errors divided by the de-

gree of freedom of the fit, usually referred to as χ2/N .

The number of degrees of freedom is assumed to be

equal to the number of free parameters, e.g., for a one-

dimensional Gaussian, there would be three: the am-

plitude, width, and center. This approach implicitly

assumes that the model describes the data well and is

an optimal fit. It also assumes that the model is linear

with all of the parameters, at least in the region imme-

diately surrounding the optimal fit. These requirements

are frequently not satisfied; see Andrae et al. (2010) and

Andrae (2010) for details. We show a demonstration of
this approximation process in Appendix A for the case

of a simple Gaussian line profile.

3. GRAPHICAL DESIGN

3.1. GUI development

Many astronomers are familiar with IRAF’s splot

tool, which is useful for fitting Gaussian profiles to spec-

tral lines. It uses keyboard interaction to specify the fit-

ting region and guesses for fitting the line profile, but for

most use cases, these parameters could only be accessed
through the GUI.

The fitting GUI in pyspeckit was built to match

splot’s functionality but with additional means of inter-

acting with the fitter. In splot, reproducing any given

fit is challenging, since subtle changes in the cursor po-
sition (i.e., the input guess) can significantly change the

fit result. In pyspeckit, it is possible to record the re-
sults of fits programmatically and re-fit using those same

results.

The GUI was built using matplotlib’s canvas inter-

action tools. These tools are limited to the GUI capa-

bilities that are compatible with all platforms (e.g., Qt,

Tk, Gtk) and therefore exclude some of the more sophis-

ticated fitting tools found in other software (e.g., glue;
Beaumont et al. 2014).

An example walking through typical interactive GUI

usage is in the online documentation at interactive.html

in the online documentation.

3.2. Plotting

Plotting in pyspeckit is designed to provide a short

path to publication-quality figures. The default plotting

mode uses histogram-style line plots and labels axes with
LATEX-formatted versions of units.

When the plotter is active and a model is fit, the model

parameters are displayed with LATEX formatting in the

plot legend. The errors on the parameters, if available,
are also shown, and these uncertainties are used to de-

cide on the number of significant figures to display.

4. MODELS

Many of pyspeckit’s internal functions are likely to
replaced by the astropy specutils package in the fu-

ture. However, the rich suite modeling in pyspeckit is

likely to remain useful indefinitely. This model library

includes some of the most useful general spectral model

functions (e.g., Gaussian, Lorentzian, and Voigt profiles)

and a wide range of specific model types (e.g., ammonia

and formaldehyde hyperfine models, the H2 rotational
ladder, and recombination line models).

The base Model class and fitting framework in

pyspeckit provide some generally useful features that

do not need to be re-implemented. Any model is gen-

eralized to a multi-component form automatically; e.g.,

the Gaussian model only describes a single Gaussian

spectral component, but the fitting tools allow any

number of independent Gaussians to be fit.

Models are customizable and examples of registering

a new or modified model in pyspeckit are included in

the online documentation.
TODO: ADD MODEL TABLE, maybe add demo of

custom model? That might be in the docs already... If

this is the beefiest part of pyspeckit, we should include a

table listing the models and potentially an example for

how to customize a model? (Author note: I (JEP)

agree, it would be really useful to include the

list of models already included, and which ones

could be used as templates for different types.)

Hyperfine Line Models—In radio and millimeter spec-
troscopy, there are several molecular line groups that

consist of several Gaussian profiles separated by a fixed

frequency offset. These hyperfine line groups are often

unique probes of physical parameters because these fea-

tures have different, known relative optical depths. In

this case, the measured relative amplitudes of these dif-

ferent features allow the optical depth (and, in turn,

the column density) to be measured from a single spec-

trum. pyspeckit provides the hyperfinemodel class to

handle this class of molecular line transitions, and it in-

cludes several molecular species implementations (HCN,

N2H
+, NH3, H2CO).

5. CUBES

interactive.html

5

Spectral cubes are growing more important in radio
astronomy since they are the natural data products pro-

duced by interferometers like ALMA and the JVLA. Op-

tical and infrared data cubes are also becoming more

common from integral field units (IFUs) like MUSE on

the VLT, OSIRIS on Keck, NIFS on Gemini, and NIR-

Spec and MIRI on JWST.
TODO: mention something about mapplot and the

general cube loading tools.

While many cube operations are handled well by

numpy-based packages like spectral-cube7, it is some-

times desirable to fit a profile to each spectrum in a

cube. The Cube.fiteach method is a tool for auto-
mated line fitting that includes parallelization of the

fit. Examples can be found in the online documen-

tation. This tool has seen significant use in custom

made survey pipelines, (e.g. ?, https://github.com/

GBTAmmoniaSurvey/GAS), and it has been incorpo-
rated into other tools (e.g., multicube8).

6. SUMMARY

pyspeckit is a versatile tool for spectroscopic analysis

in python and is one of the astropy affiliated packages.

we have escribed the fitting and plotting tools provided

in pyspeckit...

pyspeckit can interactively fit a model to a spectrum

using the Levenberg-Marquardt optimization method

via mpfit and lmfit, and wrappers for pymc and emcee

are also available. There is also the option to fit a

model to the many spectra in a spectral cube. We
have described pyspeckit’s methods of error estima-

tion for spectra with and without user-provided errors.

pyspeckit has a library of models including Gaussian,

Lorentzian, Voigt, and others for specific molecular

species; user-created models can also be used with

pyspeckit. we have summarized the currently imple-

mented models...

7. FINAL NOTE

This paper was collaboratively written using GitHub

as a platform for discussion. Its version history and

records of some discussions about its content can be

found at https://github.com/pyspeckit/paper1.

REFERENCES

Andrae, R. 2010, ArXiv e-prints

Andrae, R., Schulze-Hartung, T., & Melchior, P. 2010,

ArXiv e-prints

Beaumont, C., Robitaille, T., & Borkin, M. 2014, Glue:

Linked data visualizations across multiple files,

Astrophysics Source Code Library

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman,

J. 2013, PASP, 125, 306, doi: 10.1086/670067

Garwood, R. W. 2000, in Astronomical Society of the

Pacific Conference Series, Vol. 216, Astronomical Data

Analysis Software and Systems IX, ed. N. Manset,

C. Veillet, & D. Crabtree, 243

Gildas Team. 2013, GILDAS: Grenoble Image and Line

Data Analysis Software, Astrophysics Source Code

Library

Greisen, E. W., Calabretta, M. R., Valdes, F. G., & Allen,

S. L. 2006, A&A, 446, 747,

doi: 10.1051/0004-6361:20053818

Levenberg, K. 1944, Quarterly of Applied Mathematics, 2,

164, doi: 10.1090/qam/10666

Marquardt, D. W. 1963, Journal of the Society for

Industrial and Applied Mathematics, 11, 431,

doi: 10.1137/0111030

Momcheva, I., & Tollerud, E. 2015, ArXiv e-prints

Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., &

Stobie, E. 2010, A&A, 524, A42,

doi: 10.1051/0004-6361/201015362

Tollerud, E. 2012, Astropysics: Astrophysics utilities for

python, Astrophysics Source Code Library

Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS,

44, 363

7 spectral-cube.readthedocs.io
8 https://github.com/vlas-sokolov/multicube

https://github.com/GBTAmmoniaSurvey/GAS
https://github.com/GBTAmmoniaSurvey/GAS
https://github.com/pyspeckit/paper1
http://doi.org/10.1086/670067
http://doi.org/10.1051/0004-6361:20053818
http://doi.org/10.1090/qam/10666
http://doi.org/10.1137/0111030
http://doi.org/10.1051/0004-6361/201015362
spectral-cube.readthedocs.io
https://github.com/vlas-sokolov/multicube

6

APPENDIX

A. PARAMETER ERROR ESTIMATION FOR A SIMPLE 1D GAUSSIAN PROFILE

As discussed in Section 2.6.2, parameter errors are estimated in pyspeckit by the underlying lmfit or mpfit tools

using the approximation that the reduced chi-squared is unity, χ2/n = 1. We demonstrate here that, for a simple

one-dimensional Gaussian profile, this approximation results in an excellent recovery of the underlying parameter

errors.

In Figure 2, we show a synthetic spectrum with uniform Gaussian random noise and perfectly-measured uncorrelated
data errors. The fitted model is a one-dimensional Gaussian profile with free parameters amplitude, center, and width.

The fit results are given in the figure.

To produce a good error estimate under the χ2/n = 1 approximation, the error distribution must be Gaussian, the

model must be linear in all parameters, and the model must be the correct underlying model (Andrae 2010).

Figure 3 shows the χ2 values in parameter space surrounding the best-fit value. Along the diagonal, we show the

χ2 values for the individual parameters with all others marginalized over by taking the minimum χ2 value over the
explored parameter space. The vertical dashed lines show the estimated 1σ errors reported by the mpfit optimizer,

while the horizontal dashed lines show the value ∆χ2 = 1, which corresponds to the 68% confidence interval for that

parameter. If the χ2/n = 1 approximation is perfect, the dashed lines should intersect with the intersection point

between the dashed lines, and in this case, they do for all parameters.

Off of the diagonal of Figure 3, we show the two-dimensional marginal distributions. Contours are shown at ∆χ2 =
1, 2.3, 6.2, 11.8, corresponding to 39.3%, 68%, 95%, and 99.5% (1σ when projected to a single parameter, 1σ, 2σ, and

3σ for two parameters, respectively, assuming normal distribution) confidence regions. The vertical and horizontal
dashed lines show the estimates from the χ2/n = 1 approximation for a single parameter; these are expected to

intersect the innermost 1σ contour for a single parameter. The shift vs amplitude and shift vs width diagrams are

both well-behaved, with error contours tracing out a symmetric distribution centered on the true parameters marked

with an ‘x’. However, the width vs amplitude plot indicates that the single-parameter errorbars underestimate the

true errors because these parameters are significantly correlated. This information is captured in the covariance matrix

that is used to compute the single-parameter errors, as it has significant values in the off-diagonal parts of the matrix.

The source code for this example can be found in the pyspeckit github repository in examples/synthetic spectrum example witherrorestimates.py

B. PARAMETER ERROR ESTIMATION FOR AMMONIA

In Section A, we showed the parameter estimation results in the case of a modeled 1-dimensional Gaussian. One of

the most commonly used models in pyspeckit is the ammonia (NH3) hyperfine model, which has several additional

emission lines and several parameters governing those lines.

The ammonia inversion transitions are notable for having spectrally resolved hyperfine components, the relative

weights of which are governed by quantum mechanics (?). The existence of these additional components often allows

for direct estimates of the optical depth of the central line, which is optically thicker than the other components,
thereby making column density estimates straightforward compared to other molecular species.

The model for these lines is more complicated than that for a single Gaussian. The model must include a simplified

version of the radiative transfer equation and must simultaneously produce the predicted emission of several lines.

Additionally, there are several approximations that are convenient to use in different circumstances, so pyspeckit

implements several different variants of the NH3 model.

In this section, we show parameter estimates analogous to those in Section A. We examine a case where the fitted
lines are in local thermodynamic equilibrium (LTE), such that the ratios of the (J,K) = (1, 1) to (2, 2) line is governed

by the rotational temperature TR but the individual lines both have Tex = TR.

The free parameters in the ammonia model are the rotational temperature, TR, which governs the relative populations

of the rotational states, the excitation temperature Tex, which governs the relative populations of the two levels within

a single inversion transition, the column density, N(NH3), which specifies the total column density of NH3 integrated

over all states (note that this parameter enters the model as 10N , i.e., we optimize the log of the column density), the

line-of-sight velocity vLoS, the line width σv, and the ortho-to-para ratio parameterized as the fraction of ortho-NH3

Fortho. In the examples below, we fix Fortho = 0 and treat only para-NH3 lines.

The fit results from the first case are shown in Figures 4 and 5. The fit recovers the input parameters, but reveals

one of the important caveats when using any optimization algorithm: in some models, parameters are degenerate, and

7

50 25 0 25 50 75 100 125 150
Velocity (km / s)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
er

g
As

cm
2

A(0)= 1.038 ± 0.041
x(0)= 50.44 ± 0.46
(0)= 10.20 ± 0.46

A(0)= 1.038 ± 0.041
x(0)= 50.44 ± 0.46
(0)= 10.20 ± 0.46

Figure 2. One-dimensional Gaussian profile fit to a synthetic spectrum. The parameter values and errors are shown in the
upper right. The number of significant figures displayed in both the value and the error is automatically set to one digit more
than the last significant digit in the error.

therefore using the diagonal of the covariance matrix to estimate the variance can result in incorrect error estimates.
While the errors on most parameters appear reasonable, there is a very large error on the excitation temperature Tex,

which is driven by the degeneracy of Tex with Ntot. The asymmetry of the error on Tex is apparent in Figure 5, but it

is not captured by the optimizer’s reported error results; the asymmetry occurs because Tex is in the exponent in the

model equations.

In such situations, it can be beneficial to measure the parameter errors in different ways. Using the emcee and pymc

wrappers can help do this. Examples of how to use these Monte Carlo samplers to acquire better parameter errors

once an optimization has already been performed are available in the online documentation: see http://pyspeckit.
readthedocs.io/en/latest/example pymc.html.

More sophisticated examples, including fitting of a non-LTE ammonia spectrum in which Tex < TR, are avail-

able in the example directory of pyspeckit (https://github.com/pyspeckit/pyspeckit/tree/master/examples), specif-

ically https://github.com/pyspeckit/pyspeckit/tree/master/examples/synthetic LTE ammonia spectrum example

witherrorestimates.py and https://github.com/pyspeckit/pyspeckit/tree/master/examples/synthetic nLTE ammonia

spectrum example witherrorestimates.py.

These examples also include demonstrations of how to force the optimizer to ignore nonphysical values while still
obtaining useful constraints on the free parameters. Constrained fitting approaches can be helpful in cases like the

ammonia fit, where high values of Tex where Tex > Trot are statistically likely given the model, but physically

disallowed; constrained fitting allows the known physical limits to rule out bad portions of parameter space.

http://pyspeckit.readthedocs.io/en/latest/example_pymc.html
http://pyspeckit.readthedocs.io/en/latest/example_pymc.html
https://github.com/pyspeckit/pyspeckit/tree/master/examples
https://github.com/pyspeckit/pyspeckit/tree/master/examples/synthetic_LTE_ammonia_spectrum_example_witherrorestimates.py
https://github.com/pyspeckit/pyspeckit/tree/master/examples/synthetic_LTE_ammonia_spectrum_example_witherrorestimates.py
https://github.com/pyspeckit/pyspeckit/tree/master/examples/synthetic_nLTE_ammonia_spectrum_example_witherrorestimates.py
https://github.com/pyspeckit/pyspeckit/tree/master/examples/synthetic_nLTE_ammonia_spectrum_example_witherrorestimates.py

8

0.
95

1.
00

1.
05

1.
10

AMPLITUDE0 Value

115

116

117

118

119

2

49
.5

50
.0

50
.5

51
.0

SHIFT0 Value

115

116

117

118

119

2

9.
5

10
.0

10
.5

11
.0

WIDTH0 Value

115

116

117

118

119

2

0.
97

5

1.
00

0

1.
02

5

1.
05

0

1.
07

5

1.
10

0

AMPLITUDE0 Value

50.0

50.5

51.0

SH
IF

T0
 V

al
ue

0.
97

5

1.
00

0

1.
02

5

1.
05

0

1.
07

5

1.
10

0

AMPLITUDE0 Value

9.5

10.0

10.5

11.0

W
ID

TH
0

Va
lu

e

50
.0

50
.5

51
.0

SHIFT0 Value

9.5

10.0

10.5

11.0

W
ID

TH
0

Va
lu

e

Figure 3. Error estimate figure. In all panels, the vertical dashed lines show the estimated 1σ errors from the optimizer, while
the horizontal dashed lines show the value ∆χ2 = 1, which corresponds to the 68% confidence interval for that parameter. In
the off-diagonal panels, contours are shown at ∆χ2 = 1, 2.3, 6.2, 11.8, corresponding to 39.3%, 68%, 95%, and 99.5% (1σ for a
single parameter, then 1σ, 2σ, and 3σ for two parameters) confidence regions. See Appendix A for details and interpretation.

C. COMPARISON OF N2H
+ (1-0) RESULTS WITH CLASS

One of the most frequently used line transitions for the study of dense gas kinematics is N2H
+ (1-0) at 93.17GHz.

The transition displays several hyperfine components with well determined relative frequencies and weights. The

standard approach for analyzing this line has been to use the HFS mode within CLASS. Here we show that using the
N2H

+ hyperfine model in pyspeckit, we obtain the same results in both optically thin and thick models.

The main difference between the CLASS and pyspeckit parametrization is that the former does not report excitation

temperature (Tex), but the area of the line profile. The reported area is τ × Tant, where

Tant = J(Tex)− J(Tbackground) , (C1)

where

Jν(T) =
h ν

kB

1

(eh ν/kB T − 1)
. (C2)

We derive the equivalent Tex from the reported line fit parameters. Moreover, in the optically thin case both fits are

performed using the common assumption of τ = 0.1 as a fixed parameter.
Tables C and 1 show the results of fitting an example spectrum in both CLASS and pyspeckit. The resulting fits

differ by < 1% in most parameters, with a slightly greater discrepancy in the velocity centroid but consistent within
the reported fit uncertainties.

9

40 20 0 20 40
Velocity (km / s)

0

5

10

Br
ig

ht
ne

ss
 T

em
pe

ra
tu

re
 T

 (K
) NH3(1, 1)

TR(0)= 34.67 ± 0.93
Tex(0)= 33 ± 6
N(0)= 15.507 ± 0.024
(0)= 2.026 ± 0.043

v(0)= 0.0049 ± 0.036
Fo(0)= 0.0

TR(0)= 34.67 ± 0.93
Tex(0)= 33 ± 6
N(0)= 15.507 ± 0.024
(0)= 2.026 ± 0.043

v(0)= 0.0049 ± 0.036
Fo(0)= 0.0

40 20 0 20 40
Velocity (km / s)

0

5

10

Br
ig

ht
ne

ss
 T

em
pe

ra
tu

re
 T

 (K
) NH3(2, 2)

Figure 4. Ammonia model profile fit to a synthetic spectrum. The parameter values and errors are shown in the upper
right. The associated error estimate triangle diagram is shown in Figure 5. The correct parameters are TR = Tex = 35,
N = 15, σv = 2, and v = 0, all of which are reasonably recovered. However, note that Tex > TR is generally nonphysical,
yet the allowed parameter space for Tex includes such values. This two-panel plot was produced automatically using the
pyspeckit.wrappers.fitnh3.plot nh3 command.

Table 1. Best fit parameters in optically thin model (3 pa-
rameters)

Parameter Input value pyspeckit fit CLASS fit

Tex 9.0 3.454±0.014 3.451

Vc 0.0 0.0016 0.0028±0.0068

σv 0.3 0.2942±0.0062 0.2930±0.0060

τall 0.01 0.1 0.1

Area 0.0607±0.0012

10

34 36
trot0 Value

158

160

162
2

20 40
tex0 Value

160

180

200

2

15
.5

0

15
.5

5
ntot0 Value

157.5

160.0

162.5

165.0

2

2.
0

2.
1

width0 Value

158

160

162
2

34 36

trot0 Value

30

40

te
x0

 V
al

ue

34 36

trot0 Value

15.475

15.500

15.525

15.550

nt
ot

0
Va

lu
e

34 36

trot0 Value

1.95

2.00

2.05

2.10

wi
dt

h0
 V

al
ue

30 40

tex0 Value

15.475

15.500

15.525

15.550

nt
ot

0
Va

lu
e

30 40

tex0 Value

1.95

2.00

2.05

2.10

wi
dt

h0
 V

al
ue

15
.5

0

15
.5

5

ntot0 Value

1.95

2.00

2.05

2.10

wi
dt

h0
 V

al
ue

Figure 5. Error estimate figure for the default NH3 model. The panels are labeled as in Figure 3. The centroid velocity panel
is excluded from this plot because it is independent of the other parameters, exhibiting no degeneracy. The most relevant panel
is the ntot0 vs tex0 panel, which plots the column N against the excitation temperature Tex: both of these parameters govern
the peak amplitude of the spectrum, so they are degenerate. The vertical and horizontal dashed lines represent the δχ2 = 1
and ±1σ computed errors, respectively. Their intersection points also intersect the blue marginalized δχ2 curve in all of the
displayed cases, indicating that the approximation of the errors using the χ2/n = 1 assumption is excellent. However, the
asymmetry seen in the blue Tex curve suggests that the approximation for that parameter is likely to break down in some cases
because the true errors are asymmetric.

11

Table 2. Best fit parameters in optically thick model (4 pa-
rameters)

Parameter Input value pyspeckit fit CLASS fit

Tex 9.0 9.19±0.19 9.1833

Vc 0.0 0.00042 -0.000±0.0063

σv 0.3 0.3047±0.0062 0.3041±0.0063

τall 9.0 8.13±0.59 8.10±0.59

Area 49.0±2.25

